Linear Algebra II

03/04/2017, Monday, 14:00-17:00

You are NOT allowed to use any type of calculators.
$1 \quad(8+7=15 \mathrm{pts})$
Gram-Schmidt process

Consider the vector space \mathbb{R}^{4} with the inner product

$$
\langle x, y\rangle=x^{T} y .
$$

Let $S \subset \mathbb{R}^{4}$ be the subspace given by

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right\}
$$

(a) Apply the Gram-Schmidt process to obtain an orthonormal basis for S.
(b) Find the closest element in the subspace S to the vector

$$
\left[\begin{array}{l}
a \\
b \\
a \\
b
\end{array}\right]
$$

where a and b are real numbers.

2 (15 pts$)$

Consider the matrix

$$
A=\left[\begin{array}{rr}
0 & a \\
-a & 0
\end{array}\right]
$$

where a is an arbitrary positive real constant By using the Cayley-Hamilton theorem, show that for all $n=0,1,2, \ldots$ we have

$$
A^{2 n}=(-1)^{n} a^{2 n} I
$$

and

$$
A^{2 n+1}=(-1)^{n} a^{2 n} A
$$

$3 \quad(3+8+4=15 \mathrm{pts})$
Singular value decomposition

Consider the matrix

$$
M=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

(a) Find the singular values of M.
(b) Find a singular value decomposition for M.
(c) Find the best rank 1 approximation of M.

A square complex matrix is called normal if $A^{H} A=A A^{H}$.
(a) Let A be a square complex matrix. Assume that there exists a unitary matrix U such that $U^{H} A U$ is a diagonal matrix. Prove that A is normal.
(b) Let T be an upper triangular matrix such that $A=U T U^{H}$. Prove that if A is normal, then also T is normal.
(c) Prove that if A is normal, then there exists a unitary matrix U such that $U^{H} A U$ is a diagonal matrix.
$5 \quad(3+2+3+3+4=15$ pts $)$
Symmetric matrices and eigenvalues
(a) Let A be a symmetric $n \times n$ matrix. Let λ be an eigenvalue of A. Show that the algebraic multiplicity of λ is equal to its geometric multiplicity.

Now consider the $n \times n$ matrix $A=\left(a_{i j}\right)$ with all entries $a_{i j}$ equal to 1 .
(b) Determine the rank of A.
(c) Determine the dimension of $\operatorname{ker}(A)$.
(d) Show that 0 is an eigenvalue of A and determine its algebraic multiplicity.
(e) Determine all eigenvalues of A.
$6(3+6+6=15 \mathrm{pts})$
Jordan canonical form

Consider the matrix

$$
M=\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & b \\
0 & 0 & 2
\end{array}\right]
$$

where a and b are arbitrary real constants.
(a) Find all eigenvalues of M together with their algebraic multiplicities.
(b) For each eigenvalue, determine for each choice of a and b its geometric multiplicity.
(c) Determine for each choice of a and b the Jordan canonical form of M.

